Editors in Chief
Prof. Dr. Saw Hla Myint, Head of the Department of Chemistry, University of Yangon
Prof. Dr. Thein Thein Win, Head of the Department of Chemistry, Yangon Institute of Education
Prof. Dr. Thida Win, Department of Chemistry, University of Mandalay
Prof. Dr. Win Win Thar, Head of the Department of Physics, University of Yangon
Dr. Khin Tint, Associate Professor, Head of the Department of Physics, Yangon Institute of Education
Prof. Dr. Yin Mya, Head of the Department of Physics, University of Mandalay
Prof. Daw Nwe Nwe Win, Head of the Department of Computer Studies, University of Yangon

Editors
Prof. Tin Kyaing, Head of the Department of Chemistry, Yangon University of Distance Education
Prof. Khin Khin Saw, Head of the Department of Chemistry, University of Dagon
Prof. Dr. Aye Aye Tun, Head of the Department of Chemistry, University of Sittway
Prof. Dr. Tin Tin, Head of the Department of Chemistry, University of Pyay
Prof. Dr. Daw Hla Than, Head of the Department of Chemistry, University of Dawei
Prof. Dr Phway Phway, Head of the Department of Chemistry, University of East Yangon
Prof. Dr. Khin Myo Nwe, Head of the Department of Chemistry, University of Hinthada
Prof. Dr. Myint Myint Sein, Head of the Department of Chemistry, University of Mandalay
Prof. Dr. Aye Aye Wai, Head of the Department of Chemistry, University of Magway
Prof. Khin Hnin Lwin, Head of the Department of Chemistry, University of Monywa
Prof. Dr. Sein Sein Aung, Department of Chemistry, University of Panglong
Prof. Dr. Tha Zin, Head of Chemistry Department, University of Loikaw
Prof. San San Wai, Head of the Department of Chemistry, University of Lashio
Prof. Dr. Aye Myatt Mynn, Head of the Department of Physics, University of Mawlamyine
Prof. Dr. Than Hla, Head of the Department of Physics, Yangon University of Distance Education
Prof. Dr. Khin Mar Kyu, Head of the Department of Physics, University of Dagon
Prof. Dr. Thet Tun Aung, Head of the Department of Physics, University of Pathein
Prof. Dr. Daw Thein Win, Head of the Department of Physics, University of Sittway
Prof. Dr. Khin Soe Win, Head of the Department of Physics, University of Pyay
Prof. Dr. Myint Myint Moe, Head of the Department of Physics, University of Dawei
Associate Prof. Dr Ni Ni Zin, Head of the Department of Physics, University of East Yangon
Prof. Dr Tin Tin Win, Head of Department of Physics, University of West Yangon
Prof. Dr. Mya Mya Win, Head of the Department of Physics, University of Hinthada
Prof. Myint Yee, Head of the Department of Physics, University of Maubin
Prof. Dr. Myint Myint Tun, Head of the Department of Physics, University of Hpaan
Prof. Dr. Than Win, Head of the Department of Physics, University of Myeik
Prof. Swe Swe Yi, Head of the Department of Physics, University of Monywa
Prof. Dr. Thet Thet, Head of the Department of Physics, Mandalay University of Distance Education
Prof. Dr. May Yee Thein, Head of Physics Department, University of Panglong
Prof. Dr. Soe Soe Nwe, Head of the Department of Physics, University of Lashio
Prof. Dr. Khin May Oo, Head of Department of Physics, Myinchan Degree College
Contents

Determination of Calorie Contents of Myanmar Snacks from Thanlyin Township
Nyo Nyo Aung, Mya Mya Mu and Myat Sandar Hla

Analysis of the Carbonate in Limestone from Loikaw Area
Tha Zin, Than Than Myint and Ni Ni Sein

Preparation and Application of Intercalated Zinc Oxide Carbon Molecular Sieves
Mya Thuzar, Nyunt Wynn and Khin Mar Tun

Process Development of Lentil flour-based Adhesive for Woodworking Industries
Tin Sein

Isolation, Identification and Antibacterial Activity of Some Xanthones Present in Fruit Hulls of Garcinia Mangostana Linn.
Sandar Aung, Aye Aye Tun, San San Aye, and Maung Maung Htay

Studies on an Unknown Compound from Argyreia barbigera Choisy
Htay Htay Win

An Antioxidant Organic Compound Isolated from the Stem of Hypericum calycinum L. (Pyin-nyar-lin-kar)
Thida Win, Thant Thant Htwe, Myint Myint Sein and Joerg Heilmann

Repellent Action of Citronella Oil Against Aedes Aegypti Mosquito
Ei Ei Soe

Investigation of the Antioxidant Activity of Cydonia cathayensis Hemsl. (Chinsaw-ga) Fruit
San San Oo

Isolation and Structural Elucidation of an Unknown Biologically Active Compound from Myanmar Traditional Indigenous Medicinal Plant Clerodendrum serratum SPRENG (Yin-bya-net)
Aye Myint, Myint Myint Sein and Mya Aye
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Helicobacter pylori and Anti-tumor Activities of (Korea and Myanmar) Herbal Medicines</td>
<td>119</td>
</tr>
<tr>
<td>Hnin Hnin Aye</td>
<td></td>
</tr>
<tr>
<td>Structural Elucidation of a Bioactive Carbazole Compound Isolated from Pteris pellucida Presl. (Say-ba-zun-doke)</td>
<td>129</td>
</tr>
<tr>
<td>Lwin Lwin Myint</td>
<td></td>
</tr>
<tr>
<td>Thermodynamic Investigation of Dodecylpyridinium Ion Binding with Fulvic and Humic Acids</td>
<td>141</td>
</tr>
<tr>
<td>Min Min Yee, Tohru Miyajima and Noboru Takisawa</td>
<td></td>
</tr>
<tr>
<td>Detecting the Incoming Objects by Using Infrared Radiation</td>
<td>151</td>
</tr>
<tr>
<td>Moe Nyo, Than Tun Oo and Aye Maw Aung</td>
<td></td>
</tr>
<tr>
<td>High Performance Computing in Yangon University</td>
<td>161</td>
</tr>
<tr>
<td>Pho Kaung and Ye Chan</td>
<td></td>
</tr>
<tr>
<td>Peripheral Interface Controller - Based Frequency Meter</td>
<td>167</td>
</tr>
<tr>
<td>Htar Htar Aye Win, Thida Soe and Ni Ni Yin</td>
<td></td>
</tr>
<tr>
<td>Spectral Analysis on Voices of Myanmar Characters and Words</td>
<td>177</td>
</tr>
<tr>
<td>Ye Chan and Win Win Kyi</td>
<td></td>
</tr>
<tr>
<td>Polarization Phenomena Associate with Scattering of Radiation in Astrophysics</td>
<td>187</td>
</tr>
<tr>
<td>Yee Yee Oo, G. Padmanabha and G. Ramachandra</td>
<td></td>
</tr>
<tr>
<td>The Study of the Curves of Functions for Data Points</td>
<td>203</td>
</tr>
<tr>
<td>Hla Myint Kyaw</td>
<td></td>
</tr>
<tr>
<td>Analysis of a Double-(^{\circ}) Hypernucleus Event in the KEK-PS E373 Experiment</td>
<td>217</td>
</tr>
<tr>
<td>Khin Than Tint</td>
<td></td>
</tr>
<tr>
<td>Elemental Analysis of Tawkyetthun (Herbal Plant) for Treatment of Diabetes</td>
<td>227</td>
</tr>
<tr>
<td>Khin Tint</td>
<td></td>
</tr>
<tr>
<td>Production of Kaonic Nuclei K^-pp by $p(p, K^+)$ and $p(d, K^0)$ Reactions</td>
<td>235</td>
</tr>
<tr>
<td>Htar Win Htike, Mar Mar Htay and Khin Swe Myint</td>
<td></td>
</tr>
</tbody>
</table>
Study on the Number of Alpha Tracks and Pore Diameters Based on Annealing Method
Mya Mya Win

Charge Storage Mechanism of PbTi$_{0.99}$Al$_{0.01}$O$_{3}$ Gated Short - Channel Thin Film Transistor
Khin Nyo Win, Kyi Kyi Aung and Lai Lai Aung

Effects of Overgrowth, Growth Rate, and Capping of InAs Quantum Dots Grown on Cross-hatch Surfaces by Molecular Beam Epitaxy
Cho Cho Thet, Ko Ko Kyaw Soe, Teeravat Limwongse, Somsak Panyakew and Songphiol Kanjanachuchai

Electrical Properties of Zn$_{1-x}$Cu$_x$O/Si Thin Film
Min Maung Maung and Aye Myat Minn

Growth and Characterization of Indium doped Zinc Oxide Solar Cell
Yee Yee Oo, Aye Aye Swe and Than Than Win

Growth Mechanism, XRD, Raman and FTIR Spectroscopic Studies of Potassium Pentaborate (KB5) Crystal
Zin Min Tun and Win Kyaw

Growth of Sol-Gel Derived Lead Titanate Thin Film for Non-Volatile Memory Device Application
Khin Moe Thant and Yin Maung Maung

Ionic Conductivity and Dehydration of ZnSO$_4$.7H$_2$O Crystal at High Temperature
Wut Hmon Win

Ionic Conductivity of xM$_2$O. (1-x) B$_2$O$_3$ Glass
Soe Soe Thin

Study on Ferroelectric Properties of TiO$_2$ / SiO$_2$ /p-Si (Metal/Ferroelectric/Insulator/Semiconductor) Thin Films
May Yee Thein, Yin Yin Thein, Than Than Win and Ko Ko Kyaw Soe

Multi-Agent Architecture Approach to Web-Based Teaching System
Nwe Nwe Win

Optimizing Database Queries by Indexing
Soe Mya Mya Aye
Analysis of a Double-Λ Hypernucleus Event in the KEK-PS E373 Experiment
Khin Than Tint

Abstract
KEK-PS E373, a hybrid emulsion experiment, was performed using a 1.66 GeV/c separated K^- meson beam at High Energy Accelerator Research Organization (KEK) proton synchrotron (PS). The purpose of this experiment is to study S = -2 nuclei produced via Ξ^- hyperon captured at rest in nuclear emulsion. We have completed the analysis of about 90% of total emulsion data, among which we have successfully observed seven events of double-Λ hypernucleus and two events of the production of twin Λ-hypernuclei. We succeeded to find the production and the decay of a \(_{\Lambda\Lambda}^6\)He nucleus. The value of \(\Lambda-\Lambda\) interaction energy, \(\Delta B_{\Lambda\Lambda}\), for double-Λ hypernucleus event#7 was \(-0.5 \pm 1.2\) MeV which is consistent with the result given by "NAGARA event" (event#2).

Key words: double-Λ hypernucleus, binding energy of two \(\Lambda\) hyperons, \(\Lambda-\Lambda\) interaction energy

Introduction
The experiment E373 was carried out at KEK-PS using a 1.66 GeV/c separated K^- meson beam with an upgraded hybrid-emulsion technique. The experimental purpose was to study nuclei with two units of strangeness (S = -2), i.e, double- Λ hypernucleus, twin Λ- hypernuclei, and the \(H\)-dibaryon, produced via Ξ^- hyperon capture at rest in the emulsion with ten time statistics (~10^3 Ξ^- hyperon stopping events) than those of the previous experiment (~80 Ξ^- hyperon stopping events in the E176 experiment). In this experiment, Ξ^- hyperons produced in a diamond target via quasi-free (K^-, K^+) reactions. A schematic view around the target region is shown in Fig. (1).
The Ξ^- hyperons were brought to rest, captured by nucleus and could form compound nucleus with $S = -2$ in the emulsion. At the decay of the nucleus, a double-Λ hypernucleus, twin-Λ–hypernuclei, single-Λ hypernucleus or H-dibaryon (if exist) is emitted, in some case, as shown in Fig. (2).

The existence of double-Λ hypernucleus is of very interest because it gives valuable information on Λ–Λ interaction and is deeply related to nuclear system with double strangeness ($S = -2$ system) such as Ξ^- hypernucleus and an H-particle. The binding energy of two Λ hyperons, $B_{\Lambda\Lambda}$, and the Λ–Λ interaction energy, $\Delta B_{\Lambda\Lambda}$, can be obtained from the measurement of the masses of double-Λ hypernucleus. The $B_{\Lambda\Lambda}$ and the $\Delta B_{\Lambda\Lambda}$ can be written as

$$B_{\Lambda\Lambda}(^{\Lambda\Lambda}Z) = M(^{\Lambda\Lambda}Z) + 2M(\Lambda) - M(^{\Lambda\Lambda}Z),$$

$$\Delta B_{\Lambda\Lambda}(^{\Lambda\Lambda}Z) = B_{\Lambda\Lambda}(^{\Lambda\Lambda}Z) - 2B_{\lambda}(^{\Lambda\lambda}Z).$$

In the 20th century, double-Λ hypernucleus events were reported by three experimental groups with nuclear emulsion. In 1963, Danysz et al. reported an event of the sequential weak decay of a double-Λ hypernucleus (Danysz, 1963). It was interpreted as $^{10}_{\Lambda\Lambda}\text{Be}$ nucleus with $B_{\Lambda\Lambda} = 17.7 \pm 0.4$ and $\Delta B_{\Lambda\Lambda} = 4.3 \pm 0.4$ MeV in reanalysis.
Fig. (2). Production process of double-Λ hypernucleus, twin-Λ hypernuclei, single-Λ hypernucleus and the H-dibaryon via Ξ^- hyperon capture at rest.

In 1966, the event reported by Prowse claimed that a Λ^6He nucleus was uniquely identified in the emulsion. The $B_{\Lambda \Lambda}$ and $\Delta B_{\Lambda \Lambda}$ were presented to be 10.9 ± 0.8 and 4.6 ± 0.5 MeV, respectively (Prowse, 1966). However, for this event, only the schematic drawing was given and measured angles
were not presented in the literature. In 1980's, an emulsion counter hybrid experiment, the E176 experiment was carried out at the KEK 12GeV Proton Synchrotron (KEK-PS) to study double strange- ness nuclei. They confirmed the existence of a double-Λ hypernucleus in nearly 80 events of Ξ⁻ hyperon capture at rest. Unfortunately, identification of the nuclear species of the double-Λ hypernucleus was not unique. An interpretation is a $^{10}_{\Lambda\Lambda}$Be nucleus with $ΔB_{LL} = -4.9 ± 0.7$ MeV and another one is a $^{13}_{\Lambda\Lambda}$B nucleus with $ΔB_{LL} = 4.9 ± 0.7$ MeV (Aoki, 1991). The above three emulsion experiments led the $ΔB_{LL}$ value to be 4~5 MeV which should show strongly attractive Λ-Λ interaction, while $ΔB_{LL} = -4.9$ MeV expressed by E176 pointed out the repulsive Λ-Λ interaction.

In E373 experiment, we have detected 7 double-Λ hypernu- cleus and 2 twin Λ-hypernuclei events. Among them, “NAGARA event” was uniquely identified as sequential weak decay of a $^{6}_{\Lambda\Lambda}$He nucleus. The process of the production and decay was

$$\Xi^- + ^{12}_{\Lambda\Lambda}C \rightarrow ^{6}_{\Lambda\Lambda}He + ^4_{\Lambda\Lambda}He + t, \ ^{6}_{\Lambda\Lambda}He \rightarrow ^5_{\Lambda\Lambda}He + p + \pi^-.$$

The event provided the Λ-Λ interaction energy as $ΔB_{LL} = 1.01 ± 0.20^{+0.18}_{-0.11}$ MeV which would show the interaction to be weakly attractive (Takahashi, 2001). In this paper, the analysis of a newly found event with a double-Λhypernucleus is presented.

Analysis

Event Description

A photograph and schematic drawing of the 7th double-Λ hypernucleus event is shown in Fig. (3). The Ξ⁻ hyperon came to rest at point A with three charged particles (track #1, #3 and #4). The particle of track#1 decayed into two charged particles (track#2 and #5) at point B. Again, the particle of track#2 decayed into three charged particles (track#6, #7 and #8) at point C. This event was found in the pl#8 (down stream of the plate) of Mod#91. The particles of tracks #7 and #8 were stopped in the upstream of pl#9. Among them, an auger electron was emitted from the stop point of track#7 as shown in Fig. (4). The particle of track#7 can be
interpreted as a negative charged π^- meson track due to the emission of the auger electron.

Fig. (3): A photograph and schematic drawing of Double-Λ Hypernucleus Event

Fig. (4): A photograph of track#7 at its stop point

Range and angle measurement

We measured the range and angle of tracks in the double-Λ hypernucleus event. The length of the track was measured by pointing the track’s edges on a computer display with a mouse device in microscope system which is shown in Fig. (5). We obtained the range, R, from x, y and z coordinates using the equation

$$ R = \sqrt{\Delta x^2 + \Delta y^2 + (\Delta z \cdot S)^2}, $$

where, the S express as the shrinkage factor calculated from the thickness ratio of the plate at the time of the beam exposure and this measurement. Δx, Δy and Δz are the lengths of the tracks in the x, y and z direction, respectively.
Fig. (5). A photograph of the microscope system

To obtain the emission angle of tracks, we measured the x, y and z coordinates at each point as shown in Fig. (6). We deduced the zenith angle (θ) with respect to the direction perpendicular to the plate and azimuthal angle (ϕ). The ranges and emission angles of all tracks are shown in Table (1).

Fig. (6): A schematic drawing of double-Λ hyper nucleus event with red colour cross where we clicked to obtain x, y, z coordinates of tracks to deduce emission angle of tracks.
Table (1) Range and emission angle of tracks in double-Λ hypernucleus event. All the lengths of tracks are visible ones in emulsion.

<table>
<thead>
<tr>
<th>Point</th>
<th>Track#</th>
<th>Range (μ m)</th>
<th>θ (degree)</th>
<th>φ (degree)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>#1</td>
<td>5.9 ± 0.3</td>
<td>112.8 ± 7.1</td>
<td>84.7 ± 1.5</td>
<td>Double-Λ hypernucleus</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>1.3 ± 0.1</td>
<td>91.5 ± 3.8</td>
<td>221.1 ± 6.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>#4</td>
<td>1.5 ± 0.2</td>
<td>88.7 ± 3.4</td>
<td>171.6 ± 6.7</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>#2</td>
<td>2.2 ± 0.5</td>
<td>128.2 ± 14.7</td>
<td>346.7 ± 4.4</td>
<td>Single-Λ hypernucleus</td>
</tr>
<tr>
<td></td>
<td>#5</td>
<td>55.2 ± 0.7</td>
<td>56.0 ± 1.2</td>
<td>101.6 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>#6</td>
<td>28.9 ± 0.3</td>
<td>99.9 ± 3.3</td>
<td>80.3 ± 0.3</td>
<td>π⁻</td>
</tr>
<tr>
<td></td>
<td>#7</td>
<td>388.8 ± 1.4</td>
<td>137.9 ± 1.3</td>
<td>272.6 ± 0.3</td>
<td>π⁻</td>
</tr>
<tr>
<td></td>
<td>#8</td>
<td>676.1 ± 1.4</td>
<td>119.4 ± 1.5</td>
<td>252.5 ± 0.1</td>
<td></td>
</tr>
</tbody>
</table>

Event Reconstruction

Event reconstruction in emulsion is based on the conservation laws of energy and momentum, and the masses of hypernuclei are calculated from the energies of their decay daughters. The kinetic energy of each charged particle was calculated from its range, where the range-energy relation was calibrated using a decays of thorium series in the emulsion. The single-Λ hypernucleus (track#2) was reconstructed at point C. For the decay mode with neutron(s) emission, the kinetic energies of the neutron(s) were calculated from the momentum valance. The sum of the kinetic energies of the charged and neutral particles is referred to as the total energy release, E_{total}. We calculated the possible decay modes of single-Λ hypernucleus by comparing with E_{total} and Q-value. The possible decay modes of single-Λ hypernucleus (track#2) are expressed in Table (2).
Table (2) Possible decay mode of single hypernucleus

<table>
<thead>
<tr>
<th>Single- (\Lambda) Hypernucleus</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
<th>Neutron(s)</th>
<th>Q-value (MeV)</th>
<th>(E_{\text{total}}) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^4 \Lambda \text{H})</td>
<td>p</td>
<td>(\pi^-)</td>
<td>p</td>
<td>2n</td>
<td>27.3</td>
<td>>22.0</td>
</tr>
<tr>
<td>(^6 \Lambda \text{He})</td>
<td>(^4 \text{He})</td>
<td>(\pi^-)</td>
<td>p</td>
<td>1n</td>
<td>34.6</td>
<td>33.6±1.7</td>
</tr>
<tr>
<td>(^7 \Lambda \text{He})</td>
<td>(^4 \text{He})</td>
<td>(\pi^-)</td>
<td>p</td>
<td>2n</td>
<td>29.9</td>
<td>>27.6</td>
</tr>
<tr>
<td>(^8 \Lambda \text{He})</td>
<td>(^4 \text{He})</td>
<td>(\pi^-)</td>
<td>p</td>
<td>3n</td>
<td>30.2</td>
<td>>25.6</td>
</tr>
</tbody>
</table>

At point B, we checked the kinematics of all possible decay modes of the double-\(\Lambda \) hypernucleus (track\#1) which decayed into a single-\(\Lambda \) hypernucleus listed in Table (2). We calculated \(B_{\Lambda \Lambda} \) and \(\Delta B_{\Lambda \Lambda} \) of the double-\(\Lambda \) hypernucleus assuming its decay after stopping. We considered also for one of the mesonic decay modes, \(\Lambda \rightarrow n\pi^0 \) case. The possible decay modes of the double-\(\Lambda \) hypernucleus for \(\Delta B_{\Lambda \Lambda} > -20 \) MeV are listed in Table (3).

Table (3) Possible decay modes of the double-\(\Lambda \) hypernucleus. The errors on \(B_{\Lambda \Lambda} \) and \(\Delta B_{\Lambda \Lambda} \) are not included in those of the binding energies of single-\(\Lambda \) hypernuclei. Only the cases of \(\Delta B_{\Lambda \Lambda} > 20 \) MeV are listed.

<table>
<thead>
<tr>
<th>Double- (\Lambda) Hypernucleus</th>
<th>#2</th>
<th>#5</th>
<th>Neutron(s)</th>
<th>(\pi^0)</th>
<th>(B_{\Lambda \Lambda}) (MeV)</th>
<th>(\Delta B_{\Lambda \Lambda}) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^6 \Lambda \text{He})</td>
<td>(^4 \text{He})</td>
<td>p</td>
<td>1n</td>
<td>(\pi^0)</td>
<td><19.34</td>
<td><13.1</td>
</tr>
<tr>
<td>(^6 \Lambda \text{He})</td>
<td>(^4 \text{He})</td>
<td>d</td>
<td></td>
<td>(\pi^0)</td>
<td>-5.56±2.2</td>
<td>-11.8±2.2</td>
</tr>
<tr>
<td>(^7 \Lambda \text{He})</td>
<td>(^4 \text{He})</td>
<td>p</td>
<td>2n</td>
<td>(\pi^0)</td>
<td><155.76</td>
<td><147.4</td>
</tr>
<tr>
<td>(^7 \Lambda \text{He})</td>
<td>(^4 \text{He})</td>
<td>p</td>
<td>2n</td>
<td>(\pi^0)</td>
<td><20.86</td>
<td><12.5</td>
</tr>
<tr>
<td>(^7 \Lambda \text{He})</td>
<td>(^4 \text{He})</td>
<td>d</td>
<td>1n</td>
<td>(\pi^0)</td>
<td><19.26</td>
<td><10.9</td>
</tr>
<tr>
<td>(^8 \Lambda \text{Li})</td>
<td>(^8 \text{He})</td>
<td>p</td>
<td></td>
<td>(\pi^0)</td>
<td><19.8</td>
<td>6.2±3.9</td>
</tr>
</tbody>
</table>
The Ξ^- hyperon was assumed to be absorbed by a light emulsion nuclei (^{12}C, ^{14}N or ^{16}O) at point A. The values of $B_{\Lambda\Lambda}$ and $\Delta B_{\Lambda\Lambda}$ were calculated from the mass of the double-Λ hypernucleus assuming that it was produced in the ground state and binding energy of Ξ^- hyperon (B_{Ξ^-}) was zero. The possible production mode of double-Λ hypernucleus are listed in Table (4).

Table (4) Possible production modes of the double-Λ hypernucleus. Only the cases of $\Delta B_{\Lambda\Lambda}<20$ MeV are listed.

<table>
<thead>
<tr>
<th>Target</th>
<th>Track#1</th>
<th>Track#3</th>
<th>Track#4</th>
<th>Neutron(s)</th>
<th>$B_{\Lambda\Lambda}$(MeV)</th>
<th>$\Delta B_{\Lambda\Lambda}$(MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{12}C</td>
<td>^6He</td>
<td>^4He</td>
<td>p</td>
<td>2n</td>
<td>>14.24</td>
<td>>8.0</td>
</tr>
<tr>
<td>^{12}C</td>
<td>^6He</td>
<td>p</td>
<td>^4He</td>
<td>2n</td>
<td>>16.14</td>
<td>>9.9</td>
</tr>
<tr>
<td>^{12}C</td>
<td>^6He</td>
<td>^4He</td>
<td>d</td>
<td>1n</td>
<td>16.84 ± 0.8</td>
<td>10.6 ± 0.8</td>
</tr>
<tr>
<td>^{12}C</td>
<td>^6He</td>
<td>d</td>
<td>^4He</td>
<td>1n</td>
<td>19.94 ± 1.2</td>
<td>13.7 ± 1.2</td>
</tr>
<tr>
<td>^{14}N</td>
<td>^6He</td>
<td>^4He</td>
<td>1n</td>
<td></td>
<td>5.74 ± 1.2</td>
<td>-0.5 ± 1.2</td>
</tr>
<tr>
<td>^{12}C</td>
<td>^7He</td>
<td>^4He</td>
<td>p</td>
<td>1n</td>
<td>20.76 ± 0.9</td>
<td>12.4 ± 0.9</td>
</tr>
</tbody>
</table>

According to the comparison of the values of $B_{\Lambda\Lambda}$ and $\Delta B_{\Lambda\Lambda}$ obtained from point A and B, the most probable interpretation of the event is

$$\Xi^- + ^{14}\text{N} \rightarrow ^{6}\Lambda\Lambda\text{He} + ^4\text{He} + ^4\text{He} + 1\text{n},$$

$$^{6}\Lambda\Lambda\text{He} \rightarrow ^4\Lambda\text{He} + p + 1\text{n} + \pi^0.$$

The double-Λ hypernucleus event #7 can be interpreted as the production and sequential weak decay of a $^6\Lambda\Lambda\text{He}$ nucleus. The value of $\Lambda-\Lambda$ interaction energy for double-Λ hypernucleus event #7 obtained from production point A was -0.5 ± 1.2 MeV which is consistent with the result given by “NAGARA event” within the errors. It is important to find more double-Λ hypernucleus events to determine the value of $\Delta B_{\Lambda\Lambda}$ uniquely.
Acknowledgement

I would like to express my deepest appreciation to Prof. Dr. K. Nakazawa, Physics Department, Gifu University, Japan, and Pro-rector Dr. Khin Swe Myint, Mandalay University for their suggestions, comments and encouragement on my research work.

I am sincerely grateful to Prof. Dr Daw Yin Mya, Head of Department, and all Associate Professors, Department of Physics, Mandalay University, for their encouragement.

References

Aoki S. et.al. (1991). Direct Observation of Sequential Weak Decay of a Double Λ Hypernucleus, Progress of Theoretical Physics, 85(6), 1287-1298.

