Editors in Chief
Prof. Dr. Win Naing, Head of the Department of Geology, University of Yangon
Prof. U Khin Aung Than, Head of the Department of Geology, University of East Yangon
U Ali Akaba Khan (a) U Tin Maung Htwe, Department of Geology, University of Mandalay
Prof. Dr. Zaw Win, Head of the Department of Mathematic, University of Yangon
Dr. Soe Soe Hlaing, Head of Mathematics Department, Yangon Institute of Economics
Prof. Dr. Khin Aye Aye, Head of the Department of Mathematics, University of Mandalay

Editors
Prof. Dr. Aye Ko Aung, Head of the Department of Geology, University of Dagon
Dr. Chit Sein, Head of the Department of Geology, University of Hinthada
Prof. Ohn Myint, Head of the Department of Geology, University of Maubin
Prof. Dr. Than Than Nu, Head of the Department of Geology, University of Mandalay
Dr. Nyan Win, Head of Geology Department, University of Loikaw
U Hla Myint, Head of Department of Geology, Shwebo Degree College
Assis Lect. Dr Khin Khin Lin, Head of the Department of Geology, University of Bhamo
Prof. Yi Yi Thein, Head of the Department of Mathematics, University of Mawlamyine
Prof. Dr. Win Kyi, Head of the Department of Mathematics, Yangon University of Distance Education
Prof. Myint Ohn, Head of the Department of Mathematics, University of Pathein
Prof. Toe Aung, Head of the Department of Mathematics, University of Taungoo
Prof. Dr Yee Myint, Head of Department of Mathematics, University of West Yangon
Dr. Hla Hla Kyi, Head of the Department of Mathematics, University of Myeik
Prof. Nu Nu Naing, Head of the Department of Mathematics, University of Magway
Prof. Nu Nu Sein, Head of the Department of Mathematics, University of Monywa
Prof. Dr Hnin Oo, Head of the Department of Mathematics, University of Yadanabon
Prof. Dr Kay Thi Tin, Head of the Department of Mathematics, Meiktila Institute of Economics
Mai Mae Khin, Head of Department of Mathematics, University of Loikaw
Prof. Oo Oo Myint, Head of the Department of Mathematics, University of Lashio
Asso. Prof. Dr Than Than Oo, Head of the Department of Mathematics, University of Kyainge Tong
Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Geology of Phongum Razi Ranges Putao District, Kachin State</td>
<td>1</td>
</tr>
<tr>
<td>Hla Htay and Aung Khin Soe</td>
<td></td>
</tr>
<tr>
<td>Preliminary report on the study of the rock units exposed along the</td>
<td>17</td>
</tr>
<tr>
<td>Mongla - Kengtung - Tarchileik road section, Eastern Shan State</td>
<td></td>
</tr>
<tr>
<td>Khin Khin Lin</td>
<td></td>
</tr>
<tr>
<td>Revision of the Stratigraphy and Age of the Early Devonian</td>
<td>31</td>
</tr>
<tr>
<td>Zebingyi Formation, Myanmar</td>
<td></td>
</tr>
<tr>
<td>Aye Ko Aung</td>
<td></td>
</tr>
<tr>
<td>New Materials of Stegolophodon (Proboscidea, Mammalia) from</td>
<td>49</td>
</tr>
<tr>
<td>the Irrawaddy Formation, Myanmar</td>
<td></td>
</tr>
<tr>
<td>Chit Sein and Tin Thein</td>
<td></td>
</tr>
<tr>
<td>New Materials of Tetraconodon malensis (Mammalia, Artiodactyla,</td>
<td>65</td>
</tr>
<tr>
<td>Suidae) from the Middle Miocene of Central Myanmar</td>
<td></td>
</tr>
<tr>
<td>Thaung Htike, Zin Maung Maung Thein and Hnin Hnin Htay</td>
<td></td>
</tr>
<tr>
<td>Palaeoecological and Palaeogeographical Significance of the Rugose</td>
<td>77</td>
</tr>
<tr>
<td>Corals from the Middle Devonian "Maymyo Formation" in Pyinoolwin</td>
<td></td>
</tr>
<tr>
<td>Township</td>
<td></td>
</tr>
<tr>
<td>Khaing Khaing San</td>
<td></td>
</tr>
<tr>
<td>The Study of Folding in Calc-silicate Rocks of Pinle-in Area,</td>
<td>89</td>
</tr>
<tr>
<td>Mandalay Division</td>
<td></td>
</tr>
<tr>
<td>Saw Ngwe Khaing</td>
<td></td>
</tr>
<tr>
<td>A Study of Clay Minerals in the Maubin Area</td>
<td>103</td>
</tr>
<tr>
<td>Ohn Myint, Thura Aung, Swe Zin Thant, Nay Soe, Htet Htet Aung, Zizawar Win Naing, Myo Min and Htin Lynn Aung</td>
<td></td>
</tr>
<tr>
<td>Tin-tungsten Mineralization of Zingyaik-Kadaik Area, Paung Township, Mon State</td>
<td>119</td>
</tr>
<tr>
<td>Than Htoo Aung</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>An Appraisal for the Mineral Assemblages to define Mineral Isograds on Paragneiss from Latha-Phayargnokto Area, Patheingyi Township, Mandalay Division, Myanmar</td>
<td>133</td>
</tr>
<tr>
<td>Petrology of Devonian Strata in Naungcho Area, Naungcho Township</td>
<td>147</td>
</tr>
<tr>
<td>Microbialites in the Thitsipin Limestone, Linwe-Kyauktaw Area, Yengan Township, Southern Shan State</td>
<td>163</td>
</tr>
<tr>
<td>Stability of Two-Level Difference Method for PDE</td>
<td>173</td>
</tr>
<tr>
<td>Finite Difference Method for Elliptic Partial Differential Equation</td>
<td>193</td>
</tr>
<tr>
<td>Numerical Approximations for Burgers Equation</td>
<td>203</td>
</tr>
<tr>
<td>Use of Finite Element Methods for Dirichlet Boundary Value Problem</td>
<td>213</td>
</tr>
<tr>
<td>Numerical Method for A Mathematical Model of A Suspension Bridge</td>
<td>231</td>
</tr>
<tr>
<td>Propagation Property for Nonlinear Double-Degenerate Parabolic Equation in Multi-Dimension</td>
<td>239</td>
</tr>
<tr>
<td>A Study on Steady State Drift-Diffusion Model for Semiconductors</td>
<td>247</td>
</tr>
<tr>
<td>Numerical Schemes for the Euler Equations</td>
<td>261</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Numerical Approximations of One-Dimensional Stationary Drift-Diffusion Model for Semiconductor</td>
<td>271</td>
</tr>
<tr>
<td>Cho Sandar</td>
<td></td>
</tr>
<tr>
<td>Characterizing the Degree Sequences of Signed Cycles and Signed Stars</td>
<td>285</td>
</tr>
<tr>
<td>Hla Hla Myint</td>
<td></td>
</tr>
<tr>
<td>Applications of Eulerian Path and Tour</td>
<td>295</td>
</tr>
<tr>
<td>Sandar Myint, Win Win Mar and Yi Myint</td>
<td></td>
</tr>
<tr>
<td>Spanning Trees with at most k Leaves in a $K_{1,4}$-free graph</td>
<td>307</td>
</tr>
<tr>
<td>Aung Kyaw</td>
<td></td>
</tr>
<tr>
<td>Arc-Disjoint Path Pair (APP) Problem</td>
<td>323</td>
</tr>
<tr>
<td>Nang Kham Maing</td>
<td></td>
</tr>
<tr>
<td>Characterization of a Bipartite Graph and Its Hamiltonicity</td>
<td>337</td>
</tr>
<tr>
<td>Shwin Seinn</td>
<td></td>
</tr>
<tr>
<td>A Study on Optimal Control of Rice Production in Taungoo Area</td>
<td>349</td>
</tr>
<tr>
<td>Aye Ko, Thin Thin Myat and Mi Mi Than</td>
<td></td>
</tr>
<tr>
<td>Proximal Method for Equilibrium Problems</td>
<td>367</td>
</tr>
<tr>
<td>Hla Hla Kyi</td>
<td></td>
</tr>
<tr>
<td>The Weighted Locally Convex Spaces of Measurable Functions on N_p Family And Continutous Functions on Nachbin Family</td>
<td>373</td>
</tr>
<tr>
<td>Saw Marlar Aung and Kyi Htin Paw</td>
<td></td>
</tr>
</tbody>
</table>
Arc-Disjoint Path Pair (APP) Problem

Nang Kham Maing

Abstract

Let $G(V,A)$ be a directed network containing n nodes $v \in V$ and m arcs $(i,j) \in A$, each with a non-negative length. In this paper arc-disjoint path pair problem is considered, which is to find a pair of arc-disjoint paths from a source to a destination in a directed network. We described Bhandari's algorithm to solve arc-disjoint path pair problem and also proved the correctness of algorithm.

Key words: Directed network, Shortest paths, Arc-disjoint path.

Introduction

Disjoint paths are used in communication networks for reliability of transmission between a given source and destination. Paths between a given pair of source and destination nodes in a network are called arc-disjoint if they have no common arcs. In this paper, we consider the problem of finding a pair of arc-disjoint paths between a pair of nodes in a directed network.

Firstly, we introduced arc-disjoint path pair problem and some basic definitions and notations are presented. Secondly, Bhandari's algorithm for solving arc-disjoint path pair problem is described. Finally, the correctness of Bhandari's algorithm is proved and we also prove that the solution produced with Bhandari's algorithm is optimal.

Statement of Arc-Disjoint Path Pair Problem

Given a network $G(V,A)$ for a source-destination pair (s,t), find a set of two paths P_1 and P_2, such that $P_1 \cap P_2 = \emptyset$ and the total length $l(P_1) + l(P_2)$ is minimized.

Tutor, Department of Mathematics, Lashio University
Some Basic Definitions and Notations on Arc-Disjoint Path Pair Problem

An arc from node \(i \) to node \(j \) is represented as \((i, j)\), \(i, j \in V \). Each arc \((i, j)\) has a numerical length (weight) \(w_{ij} \). We assume that only non-negative arc lengths are assigned to each arc. However, in the process of computing disjoint paths, negative arc lengths may be assigned to arcs.

Let \(G (V, A) \) be a network, a path \(P \), between a source \(s \) and destination \(t \) is considered to be a set of arcs that compose this path. With a slight abuse of notation, we choose \(P \) to denote the path as well as its arc set. The length of a path \(l(P) \) is computed as \(l(P) = \sum_{(i,j) \in P} w_{ij} \).

We define the total length of two paths as \(l(P_1) + l(P_2) \).

Let \(P \) be a path from \(s \) to \(t \), \(q \) is said to be a sub-path of \(P \) if it coincides with \(P \) from \(s \) until \(y \).

The shortest path between two nodes \(i \) and \(j \) is the path joining \(i \) to \(j \), that has minimum length.

The intersection of paths \(P_1 \) and \(P_2 \) is the set of arcs which contains both \(P_1 \) and \(P_2 \),

\[
P_1 \cap P_2 = \{(i, j) \in A \mid (i, j) \in P_1 \text{ and } (i, j) \in P_2\}.
\]

The union of paths \(P_1 \) and \(P_2 \) is the set of arcs which contains either \(P_1 \) or \(P_2 \), i.e., \(P_1 \cup P_2 = \{(i, j) \in A \mid (i, j) \in P_1 \text{ or } (i, j) \in P_2\} \).

If path \(P_1 \) is arc-disjoint with \(P_2 \), there is no common arc element in the arc set representing each path and \(P_1 \cap P_2 = \emptyset \), else \(P_1 \cap P_2 \neq \emptyset \).

If path \(P_1 \) is arc-disjoint with \(P_2 \), i.e., \(P_1 \cap P_2 = \emptyset \), we have \(l(P_1 \cup P_2) = l(P_1) + l(P_2) \).

The path which is obtained by reversing the direction and the sign of the arc lengths of each arc on the path \(P_1 \) between \(s \) and \(t \) is called the path \(-P_1\) directed from \(t \) to \(s \).
Fig. 1. Paths P_1 and $-P_1$

$P_1 \sim P_2$ is a set, which consists of the P_1 arcs whose reversed arcs appear on P_2 and vice versa,
i.e., $P_1 \sim P_2 = \{(i, j) \text{ and } (j, i) \mid (i, j) \in P_1 \text{ and } (j, i) \in P_2\}$.

A modified network $G(V, A')$ is a network which is created by reversing the direction and the sign of the length of each arc on the shortest path P_1 from node s to node t in a directed network $G(V, A)$.

In all the figures, bold lines represent arcs on the shortest path(s) in a network or its corresponding modified network, dashed lines represent reversed arcs which do not exist in the original network and bold dashed lines represent such reversed arcs that appear on the shortest path.

Bhandari's Algorithm

The steps of the Bhandari's algorithm for solving arc-disjoint path pair problem are as follows:

Given a directed network $G(V, A)$, for a source-destination pair (s, t),

Step 1. Find the shortest path P_1 from node s to node t;

Step 2. Replace P_1 with $-P_1$, a modified network $G(V, A')$ is created;

Step 3. Find a shortest path P_2 from node s to node t in the modified network $G(V, A')$, if P_2 does not exist, then stop;

Step 4. Take the union of P_1 and P_2, remove from the union the arc set which consists of the P_1 arcs whose reversed arcs appear in P_2 and
vice versa, then group the remaining arcs into two paths \(P_1' \) and \(P_2' \), i.e., \(P_1' \cup P_2' = (P_1 \cup P_2) \setminus (P_1 \cap P_2) \)

We will explain the steps of Bhandari’s algorithm with examples in Fig. 2. and Fig. 3.

Example (1)

We are required to find a set of two shortest disjoint paths between \(s \) and \(t \).

In Step 1, the shortest path from \(s \) to \(t \) is found as \(P_1 = sact \), with minimum length 6. In Step 2, a modified network \(G (V, A') \) is created by replacing \(P_1 \) with \(-P_1\). In Step 3, the shortest path in the modified network \(P_2 = scabt \) has length 10. In Step 4, \(P_1 \cap P_2 = \{(a, c), (c, a)\} \) is removed from the union \(P_1 \cup P_2 \). The solution set of disjoint paths \(\{P_1', P_2'\} = \{sabt, stc\} \) is obtained. The total length of this path set equals \(8 + 8 = 16 \), which is exactly the minimal total length of two arc-disjoint paths in this network.
Example (2)

Bhandari's algorithm is exemplified with the network in Fig. 3.

In Step 1, the shortest path from s to t is found as \(P_1 = scdt \), with minimum length 4. In Step 2, a modified network \(G(V, A') \) is created by replacing \(P_1 \) with \(-P_1 \). In Step 3, the shortest path in the modified network \(P_2 = sabt \) has length 7. In Step 4, \(P_1 \sim P_2 = \emptyset \). The solution set of disjoint paths \(\{P_1', P_2'\} = \{scdt, sabt\} \) is obtained. The total length of this path set equals \(4 + 7 = 11 \) which is exactly the minimal total length of two arc-disjoint paths in this network.

Correctness of Bhandari's Algorithm

We will first show that the optimal solution set of Bhandari's algorithm is based on the shortest path.

Given a network \(G(V, A) \) and a pair of source-destination nodes \((s, t) \), the relation between a set of two arc-disjoint paths \(\{P_1', P_2'\} \) and the shortest path \(P_1 \) belongs to one of the following types.
Lemma (1)

Given a directed network $G (V, A)$ and a source-destination pair (s, t), if the optimal set $\{P'_1, P'_2\}$ of APP exists, $P'_1 \cup P'_2$ must contain either the first shortest path P_1 itself or some P_1 arcs on each of its two paths.

Proof.

If $P'_1 \cup P'_2$ is of type (4), then each path in $\{P'_1, P'_2\}$ is arc-disjoint with P_1. As P_1 is the shortest path, both $\{P_1, P'_1\}$ and $\{P_1, P'_2\}$ have a total length shorter than $\{P'_1, P'_2\}$. Hence the optimal set $\{P'_1, P'_2\}$ cannot be of type (4) and $P'_1 \cup P'_2$ must contain some or all P_1 arcs to be the optimal set.

If $P'_1 \cup P'_2$ is of type (3), only one path in $P'_1 \cup P'_2$ contains some P_1 arcs, without loss of generality, suppose P'_1 contains some P_1 arcs and the other path P'_2 is arc-disjoint with P_1, then $\{P_1, P'_2\}$ is a set which is shorter than $\{P'_1, P'_2\}$. Hence the optimal set $\{P'_1, P'_2\}$ cannot be of type (3).

Therefore, if the optimal set $\{P'_1, P'_2\}$ exists, $P'_1 \cup P'_2$ must be either of type (1) or (2). \blacksquare

Definition (1)

The logical difference set $P_2 - P_1$ also can be computed as

$$P_2 - P_1 = \{(i, j)| (i, j) \in P_2 \setminus (P_2 \cap P_1)\} \cup \{(j, i)| (i, j) \in P_1 \setminus (P_2 \cap P_1)\}$$

which means that if an arc (i, j) of P_2 does not appear on P_1, then this arc belongs to the difference set $P_2 - P_1$ and if an arc (i, j) of P_1 does not
appear on P_2, then its direction reversed arc (j, i) belongs to the difference set $P_2 - P_1$ with an arc length $w_{ij} = -w_{ji}$.

Remark

In set theory, the difference operation is defined as $P_2 - P_1 = P_2 \setminus (P_1 \cap P_2)$ and the symmetric difference operation is defined as $P_2 - P_1 = (P_2 \cup P_1) \setminus (P_1 \cap P_2)$. The concept of logical difference set in this paper resembles the symmetric difference set but it is not the same.

Lemma (2)

Let us denote $O_I = (P'_1 \cup P'_2) \sim (-P_I)$, which means that the set O_I consists of each P_1 arc in the union of $P_2 \cup P_1$ and its corresponding $-P_1$ arc. Then $O_I = P'_1 \cup P'_2 \cap P_1$, and $l(O_I) = 0$.

Proof.

$$O_I = (P'_1 \cup P'_2) \sim (-P_I)$$

$$= \{(i, j), (i, j)\mid (i, j) \in P'_1 \cup P'_2 \text{ and } (j, i) \in -P_I\}$$

$$= \{(i, j), (i, j)\mid (i, j) \in P'_1 \cup P'_2 \text{ and } (i, j) \in P_1\}$$

$$= \{(i, j)\mid (i, j) \in P'_1 \cup P'_2 \cap P_1\}$$

$$= P'_1 \cup P'_2 \cap P_1.$$

$$l(O_I) = 0$$

because the set O_I consists of cycles with zero length, each consisting of a pair of opposite arcs P_1 and $-P_1$.

Lemma (3)

The logical difference set between $P'_1 \cup P'_2$ and P_1 is

$$(P'_1 \cup P'_2) - P_1 = P'_1 \cup P'_2 \cup (-P_I) \setminus O_I.$$

Proof.

$$(P'_1 \cup P'_2) - P_1 = \{(i, j)\mid (i, j) \in P'_1 \cup P'_2 \setminus (P'_1 \cup P'_2) \cap P_1\} \cup$$

$$\{(j, i)\mid (j, i) \in P_1 \setminus (P'_1 \cup P'_2) \cap P_1\}$$

$$= \{(i, j)\mid (i, j) \in P'_1 \cup P'_2 \cup (-P_I) \backslash (P'_1 \cup P'_2) \cap P_1\}$$

$$= \{(i, j)\mid (i, j) \in P'_1 \cup P'_2 \cup (-P_I) \setminus O_I\}$$

$$= P'_1 \cup P'_2 \cup (-P_I) \setminus O_I.$$
Proposition (1)

The optimal set \{P_1', P_2'\} has the smallest difference in length \(Y = l(P_1') + l(P_2') - l(P_1) \geq 0 \) from the shortest path \(P_1 \), among all the possible sets of arc-disjoint path pairs.

Proof.

We will prove this proposition by using the definition of the logical difference set.

With \(l(-P_1) = -l(P_1) \), \((P_1' \cup P_2') - P_1 = P_1' \cup P_2' \cup (-P_1) \setminus O_t \), we have
\[
l((P_1' \cup P_2') - P_1) = l((P_1' \cup P_2' \cup (-P_1) \setminus O_t) \-
\quad l((P_1' \cup P_2') \cup (-P_1)) - l(O_t) \-
\quad l(P_1' \cup P_2') + l(-P_1) \-
\quad l(P_1') + l(P_2') + l(-P_1) \-
\quad l(P_1') + l(P_2') - l(P_1) \-
\quad Y.
\]

The following lemma shows that the logical difference set forms the shortest path in the modified network.

Lemma (4)

Given a directed network \(G(V, A) \) and pair \((s, t) \) and let \(P_1 \) be the shortest path in this network. We define \(G'(V, A') \) as the network \(G(V, A) \) for which the path \(P_1 \) is replaced with \(-P_1\). The logical difference set \((P_1' \cup P_2') - P_1 \) between the optimal set of two arc-disjoint paths \{\(P_1', P_2' \)\} and the shortest path \(P_1 \) forms the shortest path \(P_2 \) from node \(s \) to node \(t \) in \(G'(V, A') \).

Proof.

We will first prove that \(P_2 = (P_1' \cup P_2') - P_1 \) is a complete path from \(s \) to \(t \) in \(G'(V, A') \).

From Lemma (1), the optimal set of two arc-disjoint paths \(P_1' \cup P_2' \) must contain either the first shortest path \(P_1 \) itself or some \(P_1 \) arcs on each of its two paths.
If $P'_1 \cup P'_2 \supseteq P_1$, without loss of generality, suppose $P'_1 = P_1$, then $O_1 = P_1 \cup (-P_1)$. With the definition of logical difference set, we have $P_2 = ((P'_1 \cup P'_2) \cup (-P_1)) \setminus O_1 = (P_1 \cup P'_2 \cup (-P_1)) \setminus (P_1 \cup (-P_1)) = P'_2$.

Hence P_2 must be a complete path from s to t.

If $P'_1 \cup P'_2$ contains some P_1 arcs on each of its two paths, as $-P_1$ is the path from t to s in $G(V, A')$, and neither P'_1 nor P'_2 contains any $-P_1$ arcs, then the union $P'_1 \cup P'_2 \cup (-P_1)$ contains two cycles: one cycle consists of P'_1 and $-P_1$, the other consists of P'_2 and $-P_1$. When the set O_1 is removed from the union set, the remaining arcs compose the logical difference set P_2. Hence P_2 must be a complete path from s to t.

Now we will prove that P_2 is the shortest path in $G(V, A')$. Assume that the shortest path in $G(V, A')$ is $P_3 \neq P_2$, then we must have $l(P_3) < l(P_2)$. As $l(P_2) = l(P'_1) + l(P'_2) - l(P_1)$ we have $l(P_3) < l(P'_1) + l(P'_2) - l(P_1)$ and $l(P_3) + l(P_1) < l(P'_1) + l(P'_2)$, which contradicts the assumption that $\{P'_1, P'_2\}$ is the optimal set.

Lemma (5)

P_j is a shortest path from 1 to j in G and (i, j) is the last arc of P_j if and only if P_i which can be obtained by dropping (i, j) from P_j is a shortest path from 1 to i.

![Fig. 4. Paths P_j and P_i](image-url)
Proof.

Suppose that P_j is a shortest path from 1 to j. Assume P_i is not a shortest path from 1 to i. Then there is a path P_i^* that is shorter than P_i. Hence if we now add (i, j) to P_i^*, we get a path from 1 to j that is shorter than P_j. This contradicts our assumption that P_j is shorter. Therefore P_i is a shortest path from 1 to i.

Conversely, suppose that P_i is a shortest path from 1 to i. Obviously, P_j is a shortest path from 1 to j because P_j is the path which can be obtained by adding (i, j) to a shortest path P_j.

Many routing algorithms assume non-negative arc lengths to avoid a cycle of negative length appearing on a path. However, negative arc lengths introduced to a network in Bhandari’s algorithm will not cause cycles in the routing process.

Theorem (1)

Given a directed network $G(V, A)$ and source-destination pair (s, t) and let P_1 be the shortest path in this network. The modified network $G(V, A')$ is defined as the network $G(V, A)$ for which P_1 is replaced with $-P_1$. A cycle containing some negative arcs in $G(V, A')$ will not have a negative length.

Fig. 5. A cycle contains some negative arc;
(a) The shortest path $P_1(s, t)$; and (b) A cycle containing some $-P_1$ arc
Proof.

Assume $s v_1 ... v_i v_{i+1} ... v_n t$ is the shortest path P_1 from node s to node t in $G (V, A)$, as shown in Fig. 5 (a). The corresponding path $-P_1$ in $G (V, A')$ (Fig. 5 (b)) has an arc (v_{i+1}, v_i) which appears on cycle $B_1 = u_i v_{i+1} v_i u_i$.

Suppose the cycle B_1 has a negative length $l(B_1) = w_{u_i v_{i+1}} + w_{v_i v_{i+1}} + w_{v_i u_i} < 0$. Because $w_{v_i v_{i+1}} = -w_{v_i v_{i+1}}$, we must have $w_{u_i v_{i+1}} - w_{v_i v_{i+1}} + w_{v_i u_i} < 0$ and $w_{v_i u_i} + w_{u_i v_{i+1}} < w_{v_i v_{i+1}}$. Hence the sub-path $s v_1 ... v_i u_i v_{i+1}$ is shorter than the sub-path $s v_1 ... v_i v_{i+1}$.

This contradicts the assumption that $s v_1 ... v_i v_{i+1} ... v_n t$ is the shortest path.

The following theorem gives the optimality of the solution produced with Bhandari’s algorithm.

Theorem (2)

Given a directed network $G (V, A)$ and source-destination pair (s, t), the Bhandari’s algorithm returns the optimal set for the APP problem.

Proof.

Let P_1 be the shortest path in the original network $G (V, A)$ found in Step 1 of Bhandari’s algorithm and P_2 be the shortest path in the modified network $G (V, A')$, found in Step 3 of Bhandari’s algorithm. Let $\{P'_1, P'_2\}$ be the solution set generated by Bhandari’s algorithm. We will prove that $\{P'_1, P'_2\}$ has the following properties.

(i) By construction of the solution set, we must have $P'_1 \cap P'_2 = \emptyset$. So the required path pair $\{P'_1, P'_2\}$ is arc-disjoint.

(ii) Suppose the optimal set of arc-disjoint paths is $\{P''_1, P''_2\}$ instead of $\{P'_1, P'_2\}$. According to Lemma (4), the logical difference set of $\{P''_1, P''_2\}$ with P_1 is the shortest path in the modified network $G (V, A')$. This
contradicts that P_2 is the shortest path in modified network $G (V, A')$. So the solution set $\{P_1', P_2'\}$ generated by Bhandari’s algorithm has minimal total length.

(iii) On Theorem (1), a cycle in the modified network $G (V, A')$ will not have a negative length.

By the above properties, the solution set returned by Bhandari’s algorithm must be the optimal set.

Conclusion

In this paper Bhandari’s algorithm which produces an optimal solution for (APP) problem has been described. We first showed that the optimal set for the (APP) problem is based on the shortest path. Secondly, we showed that the optimal set of two arc-disjoint path has the smallest difference in length from the shortest path among all the possible set of arc-disjoint paths. And we also proved that the logical difference set forms the shortest path in the modified network. Finally we proved that the solution produced with Bhandari’s algorithm is optimal.

Acknowledgement

We are deeply indebted to Dr. Khin Maung Oo, Pro-rector of Lashio University for providing the full facilities and constant encouragement throughout the publication period.

We are also extremely grateful to Daw Oo Oo Myint, Professor, Head of Mathematics Department, Lashio University for her advise and support of this research work.

We profound gratitude also goes to Dr. Yi Myint, Professor, Head of Mathematics Department, West Yangon University and Dr. Nwe Wai Aung, Assistant Lecturer, Mathematics Department, Mandalay University, for their supervising and guideline.
References

